1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
//! A lock-free work-stealing deque. //! //! There is one worker and possibly multiple stealers per deque. The worker has exclusive access //! to one side of the deque and may push and pop elements. Stealers can only steal (i.e. pop) //! elements from the other side. //! //! The implementation is based on the following papers: //! //! 1. Dynamic Circular Work-Stealing Deque //! <sup>[pdf][chase-lev]</sup> //! 2. Correct and Efficient Work-Stealing for Weak Memory Models //! <sup>[pdf][weak-mem]</sup> //! 3. CDSChecker: Checking Concurrent Data Structures Written with C/C++ Atomics //! <sup>[pdf][checker] [code][code]</sup> //! //! [chase-lev]: https://pdfs.semanticscholar.org/3771/77bb82105c35e6e26ebad1698a20688473bd.pdf //! [weak-mem]: http://www.di.ens.fr/~zappa/readings/ppopp13.pdf //! [checker]: http://plrg.eecs.uci.edu/publications/c11modelcheck.pdf //! [code]: https://github.com/computersforpeace/model-checker-benchmarks/tree/master/chase-lev-deque-bugfix //! //! # Examples //! //! ``` //! use coco::deque; //! //! let (w, s) = deque::new(); //! //! // Create some work. //! for i in 0..1000 { //! w.push(i); //! } //! //! let threads = (0..4).map(|_| { //! let s = s.clone(); //! std::thread::spawn(move || { //! while let Some(x) = s.steal() { //! // Do something with `x`... //! } //! }) //! }).collect::<Vec<_>>(); //! //! while let Some(x) = w.pop() { //! // Do something with `x`... //! // Or create even more work... //! if x > 1 { //! w.push(x / 2); //! w.push(x / 2); //! } //! } //! //! for t in threads { //! t.join().unwrap(); //! } //! ``` use std::cmp; use std::fmt; use std::marker::PhantomData; use std::mem; use std::ptr; use std::sync::Arc; use std::sync::atomic::{AtomicIsize, fence}; use std::sync::atomic::Ordering::{Acquire, Release, Relaxed, SeqCst}; use epoch::{self, Atomic}; /// Minimum buffer capacity for a deque. const MIN_CAP: usize = 16; /// A buffer where deque elements are stored. struct Buffer<T> { /// Pointer to the allocated memory. ptr: *mut T, /// Capacity of the buffer. Always a power of two. cap: usize, } impl<T> Buffer<T> { /// Returns a new buffe with the specified capacity. fn new(cap: usize) -> Self { let mut v = Vec::with_capacity(cap); let ptr = v.as_mut_ptr(); mem::forget(v); Buffer { ptr: ptr, cap: cap, } } /// Returns a pointer to the element at the specified `index`. unsafe fn at(&self, index: isize) -> *mut T { // `self.len` is always a power of two. self.ptr.offset(index & (self.cap - 1) as isize) } /// Writes `value` into the specified `index`. unsafe fn write(&self, index: isize, value: T) { ptr::write(self.at(index), value) } /// Reads the value from the specified `index`. unsafe fn read(&self, index: isize) -> T { ptr::read(self.at(index)) } } struct Deque<T> { bottom: AtomicIsize, top: AtomicIsize, buffer: Atomic<Buffer<T>>, } /// A work-stealing deque. impl<T> Deque<T> { /// Returns a new, empty deque. fn new() -> Self { Deque { bottom: AtomicIsize::new(0), top: AtomicIsize::new(0), buffer: Atomic::new(Buffer::new(MIN_CAP), 0), } } /// Returns the number of elements in the deque. /// /// If used concurrently with other operations, the returned number is just an estimate. fn len(&self) -> usize { let b = self.bottom.load(Relaxed); let t = self.top.load(Relaxed); // The length can be negative because `b` and `t` were loaded without synchronization. cmp::max(b.wrapping_sub(t), 0) as usize } /// Resizes the buffer with new capacity of `new_cap`. #[cold] unsafe fn resize(&self, new_cap: usize) { // Load the bottom, top, and buffer. let b = self.bottom.load(Relaxed); let t = self.top.load(Relaxed); let buffer = self.buffer.load_raw(Relaxed).0; // Allocate a new buffer. let new = Buffer::new(new_cap); // Copy data from the old buffer to the new one. let mut i = t; while i != b { ptr::copy_nonoverlapping((*buffer).at(i), new.at(i), 1); i = i.wrapping_add(1); } epoch::pin(|pin| { // Replace the old buffer with the new one. self.buffer.store_box(Box::new(new), 0, pin).as_raw(); let ptr = (*buffer).ptr; let cap = (*buffer).cap; // Destroy the old buffer later. epoch::defer_free(ptr, cap, pin); epoch::defer_free(buffer, 1, pin); // If the size of the buffer at least than 1KB, then flush the thread-local garbage in // order to destroy it sooner. if mem::size_of::<T>() * cap >= 1 << 10 { epoch::flush(pin); } }) } /// Pushes an element onto the bottom of the deque. fn push(&self, value: T) { unsafe { // Load the bottom, top, and buffer. The buffer doesn't have to be epoch-protected // because the current thread (the worker) is the only one that grows and shrinks it. let b = self.bottom.load(Relaxed); let t = self.top.load(Acquire); let mut buffer = self.buffer.load_raw(Relaxed).0; // Calculate the length of the deque. let len = b.wrapping_sub(t); // Is the deque full? let cap = (*buffer).cap; if len >= cap as isize { // Yes. Grow the underlying buffer. self.resize(2 * cap); buffer = self.buffer.load_raw(Relaxed).0; } // Write `value` into the right slot and increment `b`. (*buffer).write(b, value); fence(Release); self.bottom.store(b.wrapping_add(1), Relaxed); } } /// Pops an element from the bottom of the deque. fn pop(&self) -> Option<T> { // Load the bottom. let b = self.bottom.load(Relaxed); // If the deque is empty, return early without incurring the cost of a SeqCst fence. let t = self.top.load(Relaxed); if b.wrapping_sub(t) <= 0 { return None; } // Decrement the bottom. let b = b.wrapping_sub(1); self.bottom.store(b, Relaxed); // Load the buffer. The buffer doesn't have to be epoch-protected because the current // thread (the worker) is the only one that grows and shrinks it. let buffer = self.buffer.load_raw(Relaxed).0; fence(SeqCst); // Load the top. let t = self.top.load(Relaxed); // Compute the length after the bottom was decremented. let len = b.wrapping_sub(t); if len < 0 { // The deque is empty. Restore the bottom back to the original value. self.bottom.store(b.wrapping_add(1), Relaxed); None } else { // Read the value to be popped. let mut value = unsafe { Some((*buffer).read(b)) }; // Are we popping the last element from the deque? if len == 0 { // Try incrementing the top. if self.top.compare_exchange(t, t.wrapping_add(1), SeqCst, Relaxed).is_err() { // Failed. We didn't pop anything. mem::forget(value.take()); } // Restore the bottom back to the original value. self.bottom.store(b.wrapping_add(1), Relaxed); } else { // Shrink the buffer if `len` is less than one fourth of `cap`. unsafe { let cap = (*buffer).cap; if cap > MIN_CAP && len < cap as isize / 4 { self.resize(cap / 2); } } } value } } /// Steals an element from the top of the deque. fn steal(&self) -> Option<T> { // Load the top. let mut t = self.top.load(Acquire); // A SeqCst fence is needed here. // If the current thread is already pinned (reentrantly), we must manually issue the fence. // Otherwise, the following pinning will issue the fence anyway, so we don't have to. if epoch::is_pinned() { fence(SeqCst); } epoch::pin(|pin| { // Loop until we successfully steal an element or find the deque empty. loop { // Load the bottom. let b = self.bottom.load(Acquire); // Is the deque empty? if b.wrapping_sub(t) <= 0 { return None; } // Load the buffer and read the value at the top. let a = self.buffer.load(pin).unwrap(); let value = unsafe { a.read(t) }; // Try incrementing the top to steal the value. if self.top.compare_exchange(t, t.wrapping_add(1), SeqCst, Relaxed).is_ok() { return Some(value); } // We didn't steal this value, forget it. mem::forget(value); // Before every iteration of the loop we must load the top, issue a SeqCst fence, // and then load the bottom. Now reload the top and issue the fence. t = self.top.load(Acquire); fence(SeqCst); } }) } /// Steals an element from the top of the deque, but only the worker may call this method. fn steal_as_worker(&self) -> Option<T> { let b = self.bottom.load(Relaxed); let a = self.buffer.load_raw(Relaxed).0; // Loop until we successfully steal an element or find the deque empty. loop { let t = self.top.load(Relaxed); // Is the deque empty? if b.wrapping_sub(t) <= 0 { return None; } // Try incrementing the top to steal the value. if self.top.compare_exchange(t, t.wrapping_add(1), SeqCst, Relaxed).is_ok() { return unsafe { Some((*a).read(t)) }; } } } } impl<T> Drop for Deque<T> { fn drop(&mut self) { // Load the bottom, top, and buffer. let b = self.bottom.load(Relaxed); let t = self.top.load(Relaxed); let buffer = self.buffer.load_raw(Relaxed).0; unsafe { // Go through the buffer from top to bottom and drop all elements in the deque. let mut i = t; while i != b { ptr::drop_in_place((*buffer).at(i)); i = i.wrapping_add(1); } // Free the memory allocated by the buffer. drop(Vec::from_raw_parts((*buffer).ptr, 0, (*buffer).cap)); drop(Vec::from_raw_parts(buffer, 0, 1)); } } } /// Worker side of a work-stealing deque. /// /// There is only one worker per deque. pub struct Worker<T> { deque: Arc<Deque<T>>, _marker: PhantomData<*mut ()>, // !Send + !Sync } unsafe impl<T: Send> Send for Worker<T> {} impl<T> Worker<T> { /// Returns the number of elements in the deque. /// /// If used concurrently with other operations, the returned number is just an estimate. /// /// # Examples /// /// ``` /// use coco::deque; /// /// let (w, _) = deque::new(); /// for i in 0..30 { /// w.push(i); /// } /// assert_eq!(w.len(), 30); /// ``` pub fn len(&self) -> usize { self.deque.len() } /// Pushes an element onto the bottom of the deque. /// /// # Examples /// /// ``` /// use coco::deque; /// /// let (w, _) = deque::new(); /// w.push(1); /// w.push(2); /// ``` pub fn push(&self, value: T) { self.deque.push(value); } /// Pops an element from the bottom of the deque. /// /// # Examples /// /// ``` /// use coco::deque; /// /// let (w, _) = deque::new(); /// w.push(1); /// w.push(2); /// /// assert_eq!(w.pop(), Some(2)); /// assert_eq!(w.pop(), Some(1)); /// assert_eq!(w.pop(), None); /// ``` pub fn pop(&self) -> Option<T> { self.deque.pop() } /// Steals an element from the top of the deque. /// /// # Examples /// /// ``` /// use coco::deque; /// /// let (w, _) = deque::new(); /// w.push(1); /// w.push(2); /// /// assert_eq!(w.steal(), Some(1)); /// assert_eq!(w.steal(), Some(2)); /// assert_eq!(w.steal(), None); /// ``` pub fn steal(&self) -> Option<T> { self.deque.steal_as_worker() } } impl<T> fmt::Debug for Worker<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Worker {{ ... }}") } } /// Stealer side of a work-stealing deque. /// /// Stealers may be cloned in order to create more stealers for the same deque. pub struct Stealer<T> { deque: Arc<Deque<T>>, _marker: PhantomData<*mut ()>, // !Send + !Sync } unsafe impl<T: Send> Send for Stealer<T> {} unsafe impl<T: Send> Sync for Stealer<T> {} impl<T> Stealer<T> { /// Returns the number of elements in the deque. /// /// If used concurrently with other operations, the returned number is just an estimate. /// /// # Examples /// /// ``` /// use coco::deque; /// /// let (w, _) = deque::new(); /// for i in 0..30 { /// w.push(i); /// } /// assert_eq!(w.len(), 30); /// ``` pub fn len(&self) -> usize { self.deque.len() } /// Steals an element from the top of the deque. /// /// # Examples /// /// ``` /// use coco::deque; /// /// let (w, s) = deque::new(); /// w.push(1); /// w.push(2); /// /// assert_eq!(s.steal(), Some(1)); /// assert_eq!(s.steal(), Some(2)); /// assert_eq!(s.steal(), None); /// ``` pub fn steal(&self) -> Option<T> { self.deque.steal() } } impl<T> Clone for Stealer<T> { fn clone(&self) -> Self { Stealer { deque: self.deque.clone(), _marker: PhantomData, } } } impl<T> fmt::Debug for Stealer<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Stealer {{ ... }}") } } /// Returns a new work-stealing deque. /// /// The worker is unique, while stealers can be cloned and distributed among multiple threads. /// /// The deque will be destructed as soon as it's worker and all it's stealers get dropped. /// /// # Examples /// /// ``` /// use coco::deque; /// /// let (w, s1) = deque::new(); /// let s2 = s1.clone(); /// /// w.push('a'); /// w.push('b'); /// w.push('c'); /// /// assert_eq!(w.pop(), Some('c')); /// assert_eq!(s1.steal(), Some('a')); /// assert_eq!(s2.steal(), Some('b')); /// ``` pub fn new<T>() -> (Worker<T>, Stealer<T>) { let d = Arc::new(Deque::new()); let worker = Worker { deque: d.clone(), _marker: PhantomData, }; let stealer = Stealer { deque: d, _marker: PhantomData, }; (worker, stealer) } #[cfg(test)] mod tests { extern crate rand; use std::sync::{Arc, Mutex}; use std::sync::atomic::{AtomicBool, AtomicUsize}; use std::sync::atomic::Ordering::SeqCst; use std::thread; use epoch; use self::rand::Rng; #[test] fn smoke() { let (w, s) = super::new(); assert_eq!(w.pop(), None); assert_eq!(s.steal(), None); assert_eq!(w.len(), 0); assert_eq!(s.len(), 0); w.push(1); assert_eq!(w.len(), 1); assert_eq!(s.len(), 1); assert_eq!(w.pop(), Some(1)); assert_eq!(w.pop(), None); assert_eq!(s.steal(), None); assert_eq!(w.len(), 0); assert_eq!(s.len(), 0); w.push(2); assert_eq!(s.steal(), Some(2)); assert_eq!(s.steal(), None); assert_eq!(w.pop(), None); w.push(3); w.push(4); w.push(5); assert_eq!(w.steal(), Some(3)); assert_eq!(s.steal(), Some(4)); assert_eq!(w.steal(), Some(5)); assert_eq!(w.steal(), None); } #[test] fn steal_push() { const STEPS: usize = 50_000; let (w, s) = super::new(); let t = thread::spawn(move || { for i in 0..STEPS { loop { if let Some(v) = s.steal() { assert_eq!(i, v); break; } } } }); for i in 0..STEPS { w.push(i); } t.join().unwrap(); } #[test] fn stampede() { const COUNT: usize = 50_000; let (w, s) = super::new(); for i in 0..COUNT { w.push(Box::new(i + 1)); } let remaining = Arc::new(AtomicUsize::new(COUNT)); let threads = (0..8).map(|_| { let s = s.clone(); let remaining = remaining.clone(); thread::spawn(move || { let mut last = 0; while remaining.load(SeqCst) > 0 { if let Some(x) = s.steal() { assert!(last < *x); last = *x; remaining.fetch_sub(1, SeqCst); } } }) }).collect::<Vec<_>>(); let mut last = COUNT + 1; while remaining.load(SeqCst) > 0 { if let Some(x) = w.pop() { assert!(last > *x); last = *x; remaining.fetch_sub(1, SeqCst); } } for t in threads { t.join().unwrap(); } } fn run_stress() { const COUNT: usize = 50_000; let (w, s) = super::new(); let done = Arc::new(AtomicBool::new(false)); let hits = Arc::new(AtomicUsize::new(0)); let threads = (0..8).map(|_| { let s = s.clone(); let done = done.clone(); let hits = hits.clone(); thread::spawn(move || { while !done.load(SeqCst) { if let Some(_) = s.steal() { hits.fetch_add(1, SeqCst); } } }) }).collect::<Vec<_>>(); let mut rng = rand::thread_rng(); let mut expected = 0; while expected < COUNT { if rng.gen_range(0, 3) == 0 { if w.pop().is_some() { hits.fetch_add(1, SeqCst); } } else { w.push(expected); expected += 1; } } while hits.load(SeqCst) < COUNT { if w.pop().is_some() { hits.fetch_add(1, SeqCst); } } done.store(true, SeqCst); for t in threads { t.join().unwrap(); } } #[test] fn stress() { run_stress(); } #[test] fn stress_pinned() { epoch::pin(|_| run_stress()); } #[test] fn no_starvation() { const COUNT: usize = 50_000; let (w, s) = super::new(); let done = Arc::new(AtomicBool::new(false)); let (threads, hits): (Vec<_>, Vec<_>) = (0..8).map(|_| { let s = s.clone(); let done = done.clone(); let hits = Arc::new(AtomicUsize::new(0)); let t = { let hits = hits.clone(); thread::spawn(move || { while !done.load(SeqCst) { if let Some(_) = s.steal() { hits.fetch_add(1, SeqCst); } } }) }; (t, hits) }).unzip(); let mut rng = rand::thread_rng(); let mut my_hits = 0; loop { for i in 0..rng.gen_range(0, COUNT) { if rng.gen_range(0, 3) == 0 && my_hits == 0 { if w.pop().is_some() { my_hits += 1; } } else { w.push(i); } } if my_hits > 0 && hits.iter().all(|h| h.load(SeqCst) > 0) { break; } } done.store(true, SeqCst); for t in threads { t.join().unwrap(); } } #[test] fn destructors() { const COUNT: usize = 50_000; struct Elem(usize, Arc<Mutex<Vec<usize>>>); impl Drop for Elem { fn drop(&mut self) { self.1.lock().unwrap().push(self.0); } } let (w, s) = super::new(); let dropped = Arc::new(Mutex::new(Vec::new())); let remaining = Arc::new(AtomicUsize::new(COUNT)); for i in 0..COUNT { w.push(Elem(i, dropped.clone())); } let threads = (0..8).map(|_| { let s = s.clone(); let remaining = remaining.clone(); thread::spawn(move || { for _ in 0..1000 { if s.steal().is_some() { remaining.fetch_sub(1, SeqCst); } } }) }).collect::<Vec<_>>(); for _ in 0..1000 { if w.pop().is_some() { remaining.fetch_sub(1, SeqCst); } } for t in threads { t.join().unwrap(); } let rem = remaining.load(SeqCst); assert!(rem > 0); assert_eq!(w.len(), rem); assert_eq!(s.len(), rem); { let mut v = dropped.lock().unwrap(); assert_eq!(v.len(), COUNT - rem); v.clear(); } drop(w); drop(s); { let mut v = dropped.lock().unwrap(); assert_eq!(v.len(), rem); v.sort(); for w in v.windows(2) { assert_eq!(w[0] + 1, w[1]); } } } }