use std::f32;
use num_traits::NumCast;
use buffer::{ImageBuffer, Pixel};
use traits::Primitive;
use image::GenericImage;
use math::utils::clamp;
#[derive(Clone, Copy)]
pub enum FilterType {
Nearest,
Triangle,
CatmullRom,
Gaussian,
Lanczos3
}
pub struct Filter <'a> {
pub kernel: Box<Fn(f32) -> f32 + 'a>,
pub support: f32
}
fn sinc(t: f32) -> f32 {
let a = t * f32::consts::PI;
if t == 0.0 {
1.0
} else {
a.sin() / a
}
}
fn lanczos(x: f32, t: f32) -> f32 {
if x.abs() < t {
sinc(x) * sinc(x / t)
} else {
0.0
}
}
fn bc_cubic_spline(x: f32, b: f32, c: f32) -> f32 {
let a = x.abs();
let k = if a < 1.0 {
(12.0 - 9.0 * b - 6.0 * c) * a.powi(3) +
(-18.0 + 12.0 * b + 6.0 * c) * a.powi(2) +
(6.0 - 2.0 * b)
} else if a < 2.0 {
(-b - 6.0 * c) * a.powi(3) +
(6.0 * b + 30.0 * c) * a.powi(2) +
(-12.0 * b - 48.0 * c) * a +
(8.0 * b + 24.0 * c)
} else {
0.0
};
k / 6.0
}
pub fn gaussian(x: f32, r: f32) -> f32 {
((2.0 * f32::consts::PI).sqrt() * r).recip() *
(-x.powi(2) / (2.0 * r.powi(2))).exp()
}
pub fn lanczos3_kernel(x: f32) -> f32 {
lanczos(x, 3.0)
}
pub fn gaussian_kernel(x: f32) -> f32 {
gaussian(x, 1.0)
}
pub fn catmullrom_kernel(x: f32) -> f32 {
bc_cubic_spline(x, 0.0, 0.5)
}
pub fn triangle_kernel(x: f32) -> f32 {
if x.abs() < 1.0 {
1.0 - x.abs()
} else {
0.0
}
}
pub fn box_kernel(x: f32) -> f32 {
if x.abs() <= 0.5 {
1.0
} else {
0.0
}
}
fn horizontal_sample<I, P, S>(image: &I, new_width: u32,
filter: &mut Filter)
-> ImageBuffer<P, Vec<S>>
where I: GenericImage<Pixel=P> + 'static,
P: Pixel<Subpixel=S> + 'static,
S: Primitive + 'static {
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(new_width, height);
for y in 0..height {
let max = S::max_value();
let max: f32 = NumCast::from(max).unwrap();
let ratio = width as f32 / new_width as f32;
for outx in 0..new_width {
let inputx = (outx as f32 + 0.5) * ratio - 0.5;
let left = (inputx - filter.support).ceil() as i64;
let left = clamp(left, 0, width as i64 - 1) as u32;
let right = {
let real_right = inputx + filter.support;
if real_right.fract() == 0.0 {
(real_right - 1.0) as i64
} else {
real_right.floor() as i64
}
};
let right = clamp(right, 0, width as i64 - 1) as u32;
let mut sum = 0.;
let mut t = (0., 0., 0., 0.);
for i in left..right + 1 {
let w = (filter.kernel)(i as f32 - inputx);
sum += w;
let x0 = clamp(i, 0, width - 1);
let p = image.get_pixel(x0, y);
let (k1, k2, k3, k4) = p.channels4();
let vec: (f32, f32, f32, f32) = (
NumCast::from(k1).unwrap(),
NumCast::from(k2).unwrap(),
NumCast::from(k3).unwrap(),
NumCast::from(k4).unwrap()
);
t.0 += vec.0 * w; t.1 += vec.1 * w;
t.2 += vec.2 * w; t.3 += vec.3 * w;
}
let (t1, t2, t3, t4) = (t.0 / sum, t.1 / sum, t.2 / sum, t.3 / sum);
let t = Pixel::from_channels(
NumCast::from(clamp(t1, 0.0, max)).unwrap(),
NumCast::from(clamp(t2, 0.0, max)).unwrap(),
NumCast::from(clamp(t3, 0.0, max)).unwrap(),
NumCast::from(clamp(t4, 0.0, max)).unwrap()
);
out.put_pixel(outx, y, t);
}
}
out
}
fn vertical_sample<I, P, S>(image: &I, new_height: u32,
filter: &mut Filter)
-> ImageBuffer<P, Vec<S>>
where I: GenericImage<Pixel=P> + 'static,
P: Pixel<Subpixel=S> + 'static,
S: Primitive + 'static {
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(width, new_height);
for x in 0..width {
let max = S::max_value();
let max: f32 = NumCast::from(max).unwrap();
let ratio = height as f32 / new_height as f32;
for outy in 0..new_height {
let inputy = (outy as f32 + 0.5) * ratio - 0.5;
let left = (inputy - filter.support).ceil() as i64;
let left = clamp(left, 0, height as i64 - 1) as u32;
let right = {
let real_right = inputy + filter.support;
if real_right.fract() == 0.0 {
(real_right - 1.0) as i64
} else {
real_right.floor() as i64
}
};
let right = clamp(right, 0, height as i64 - 1) as u32;
let mut sum = 0.;
let mut t = (0., 0., 0., 0.);
for i in left..right + 1 {
let w = (filter.kernel)(i as f32 - inputy);
sum += w;
let y0 = clamp(i, 0, height - 1);
let p = image.get_pixel(x, y0);
let (k1, k2, k3, k4) = p.channels4();
let vec: (f32, f32, f32, f32) = (
NumCast::from(k1).unwrap(),
NumCast::from(k2).unwrap(),
NumCast::from(k3).unwrap(),
NumCast::from(k4).unwrap()
);
t.0 += vec.0 * w; t.1 += vec.1 * w;
t.2 += vec.2 * w; t.3 += vec.3 * w;
}
let (t1, t2, t3, t4) = (t.0 / sum, t.1 / sum, t.2 / sum, t.3 / sum);
let t = Pixel::from_channels(
NumCast::from(clamp(t1, 0.0, max)).unwrap(),
NumCast::from(clamp(t2, 0.0, max)).unwrap(),
NumCast::from(clamp(t3, 0.0, max)).unwrap(),
NumCast::from(clamp(t4, 0.0, max)).unwrap()
);
out.put_pixel(x, outy, t);
}
}
out
}
pub fn filter3x3<I, P, S>(image: &I, kernel: &[f32])
-> ImageBuffer<P, Vec<S>>
where I: GenericImage<Pixel=P> + 'static,
P: Pixel<Subpixel=S> + 'static,
S: Primitive + 'static {
let taps: &[(isize, isize)] = &[
(-1, -1), ( 0, -1), ( 1, -1),
(-1, 0), ( 0, 0), ( 1, 0),
(-1, 1), ( 0, 1), ( 1, 1),
];
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(width, height);
let max = S::max_value();
let max: f32 = NumCast::from(max).unwrap();
let sum = match kernel.iter().fold(0.0, |s, &item| s + item) {
x if x == 0.0 => 1.0,
sum => sum
};
let sum = (sum, sum, sum, sum);
for y in 1..height - 1 {
for x in 1..width - 1 {
let mut t = (0., 0., 0., 0.);
for (&k, &(a, b)) in kernel.iter().zip(taps.iter()) {
let k = (k, k, k, k);
let x0 = x as isize + a;
let y0 = y as isize + b;
let p = image.get_pixel(x0 as u32, y0 as u32);
let (k1, k2, k3, k4) = p.channels4();
let vec: (f32, f32, f32, f32) = (
NumCast::from(k1).unwrap(),
NumCast::from(k2).unwrap(),
NumCast::from(k3).unwrap(),
NumCast::from(k4).unwrap()
);
t.0 += vec.0 * k.0; t.1 += vec.1 * k.1;
t.2 += vec.2 * k.2; t.3 += vec.3 * k.3;
}
let (t1, t2, t3, t4) = (t.0 / sum.0, t.1 / sum.1, t.2 / sum.2, t.3 / sum.3);
let t = Pixel::from_channels(
NumCast::from(clamp(t1, 0.0, max)).unwrap(),
NumCast::from(clamp(t2, 0.0, max)).unwrap(),
NumCast::from(clamp(t3, 0.0, max)).unwrap(),
NumCast::from(clamp(t4, 0.0, max)).unwrap()
);
out.put_pixel(x, y, t);
}
}
out
}
pub fn resize<I: GenericImage + 'static>(image: &I, nwidth: u32, nheight: u32,
filter: FilterType)
-> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
where I::Pixel: 'static,
<I::Pixel as Pixel>::Subpixel: 'static {
let mut method = match filter {
FilterType::Nearest => Filter {
kernel: Box::new(box_kernel),
support: 0.5
},
FilterType::Triangle => Filter {
kernel: Box::new(triangle_kernel),
support: 1.0
},
FilterType::CatmullRom => Filter {
kernel: Box::new(catmullrom_kernel),
support: 2.0
},
FilterType::Gaussian => Filter {
kernel: Box::new(gaussian_kernel),
support: 3.0
},
FilterType::Lanczos3 => Filter {
kernel: Box::new(lanczos3_kernel),
support: 3.0
},
};
let tmp = vertical_sample(image, nheight, &mut method);
horizontal_sample(&tmp, nwidth, &mut method)
}
pub fn blur<I: GenericImage + 'static>(image: &I, sigma: f32)
-> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
where I::Pixel: 'static,
<I::Pixel as Pixel>::Subpixel: 'static {
let sigma = if sigma < 0.0 {
1.0
} else {
sigma
};
let mut method = Filter {
kernel: Box::new(|x| gaussian(x, sigma)),
support: 2.0 * sigma
};
let (width, height) = image.dimensions();
let tmp = vertical_sample(image, height, &mut method);
horizontal_sample(&tmp, width, &mut method)
}
pub fn unsharpen<I, P, S>(image: &I, sigma: f32, threshold: i32)
-> ImageBuffer<P, Vec<S>>
where I: GenericImage<Pixel=P> + 'static,
P: Pixel<Subpixel=S> + 'static,
S: Primitive + 'static {
let mut tmp = blur(image, sigma);
let max = S::max_value();
let max: i32 = NumCast::from(max).unwrap();
let (width, height) = image.dimensions();
for y in 0..height {
for x in 0..width {
let a = image.get_pixel(x, y);
let b = tmp.get_pixel_mut(x, y);
let p = a.map2(b, |c, d| {
let ic: i32 = NumCast::from(c).unwrap();
let id: i32 = NumCast::from(d).unwrap();
let diff = (ic - id).abs();
if diff > threshold {
let e = clamp(ic + diff, 0, max);
NumCast::from(e).unwrap()
} else {
c
}
});
*b = p;
}
}
tmp
}
#[cfg(test)]
mod tests {
#[cfg(feature = "benchmarks")]
use test;
use buffer::{ImageBuffer, RgbImage};
use super::{resize, FilterType};
#[bench]
#[cfg(all(feature = "benchmarks", feature = "png_codec"))]
fn bench_resize(b: &mut test::Bencher) {
use std::path::Path;
let img = ::open(&Path::new("./examples/fractal.png")).unwrap();
b.iter(|| {
test::black_box(resize(&img, 200, 200, ::Nearest ));
});
b.bytes = 800*800*3 + 200*200*3;
}
#[test]
fn test_issue_186() {
let img: RgbImage = ImageBuffer::new(100, 100);
let _ = resize(&img, 50, 50, FilterType::Lanczos3);
}
}