[][src]Struct la::EigenDecomposition

pub struct EigenDecomposition<T> { /* fields omitted */ }

Eigenvalues and eigenvectors of a real matrix.

Ported from JAMA.

If A is symmetric, then A = VDV' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V * D * V' and V * V' = I.

If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + imu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that AV = V*D, The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V * D * V^-1 depends upon V.cond().

Methods

impl<T: Float + ApproxEq<T> + Signed> EigenDecomposition<T>[src]

pub fn new(a: &Matrix<T>) -> EigenDecomposition<T>[src]

pub fn get_v<'lt>(&'lt self) -> &'lt Matrix<T>[src]

pub fn get_real_eigenvalues<'lt>(&'lt self) -> &'lt Vec<T>[src]

pub fn get_imag_eigenvalues<'lt>(&'lt self) -> &'lt Vec<T>[src]

pub fn get_d(&self) -> Matrix<T>[src]

Auto Trait Implementations

impl<T> Send for EigenDecomposition<T> where
    T: Send

impl<T> Sync for EigenDecomposition<T> where
    T: Sync

impl<T> Unpin for EigenDecomposition<T> where
    T: Unpin

impl<T> UnwindSafe for EigenDecomposition<T> where
    T: UnwindSafe

impl<T> RefUnwindSafe for EigenDecomposition<T> where
    T: RefUnwindSafe

Blanket Implementations

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]