[][src]Struct la::LUDecomposition

pub struct LUDecomposition<T> { /* fields omitted */ }

LU Decomposition.

Originally based on JAMA.

For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n unit lower triangular matrix L, an n-by-n upper triangular matrix U, and a permutation vector piv of length m so that A(piv,:) = L*U. If m < n, then L is m-by-m and U is m-by-n.

The LU decompostion with pivoting always exists, even if the matrix is singular. The primary use of the LU decomposition is in the solution of square systems of simultaneous linear equations. This will fail if the matrix is singular.

Methods

impl<T: Float + ApproxEq<T> + Signed> LUDecomposition<T>[src]

pub fn new(a: &Matrix<T>) -> LUDecomposition<T>[src]

pub fn is_singular(&self) -> bool[src]

pub fn is_non_singular(&self) -> bool[src]

pub fn get_l(&self) -> Matrix<T>[src]

pub fn get_u(&self) -> Matrix<T>[src]

pub fn get_p(&self) -> Matrix<T>[src]

pub fn get_piv<'lt>(&'lt self) -> &'lt Vec<usize>[src]

pub fn det(&self) -> T[src]

pub fn solve(&self, b: &Matrix<T>) -> Option<Matrix<T>>[src]

Auto Trait Implementations

impl<T> Send for LUDecomposition<T> where
    T: Send

impl<T> Sync for LUDecomposition<T> where
    T: Sync

impl<T> Unpin for LUDecomposition<T> where
    T: Unpin

impl<T> UnwindSafe for LUDecomposition<T> where
    T: UnwindSafe

impl<T> RefUnwindSafe for LUDecomposition<T> where
    T: RefUnwindSafe

Blanket Implementations

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]