[][src]Struct la::SVD

pub struct SVD<T> { /* fields omitted */ }

Singular Value Decomposition.

Ported from JAMA (with changes).

For an m-by-n matrix A, the singular value decomposition is an m-by-m orthogonal matrix U, an m-by-n block diagonal matrix S, and an n-by-n orthogonal matrix V so that A = USV'.

The singular values, sigma[k] = S[k][k], are ordered so that sigma[0] >= sigma[1] >= ... >= sigma[n-1].

The singular value decompostion always exists. The matrix condition number and the effective numerical rank can be computed from this decomposition.

Methods

impl<T: Float + Signed + ApproxEq<T>> SVD<T>[src]

pub fn new(a: &Matrix<T>) -> SVD<T>[src]

Calculates SVD.

pub fn get_u<'lt>(&'lt self) -> &'lt Matrix<T>[src]

pub fn get_s<'lt>(&'lt self) -> &'lt Matrix<T>[src]

pub fn get_v<'lt>(&'lt self) -> &'lt Matrix<T>[src]

pub fn rank(&self) -> usize[src]

pub fn direct(a: &Matrix<T>) -> SVD<T>[src]

Calculates SVD using the direct method. Note that calculating it this way is not numerically stable, so it is mostly useful for testing purposes.

Auto Trait Implementations

impl<T> Send for SVD<T> where
    T: Send

impl<T> Sync for SVD<T> where
    T: Sync

impl<T> Unpin for SVD<T> where
    T: Unpin

impl<T> UnwindSafe for SVD<T> where
    T: UnwindSafe

impl<T> RefUnwindSafe for SVD<T> where
    T: RefUnwindSafe

Blanket Implementations

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]